Year 12 Exam Week Preparation

Year Group:	12
Subject:	Applied Science

Details of exam

Paper to be sat:	3 x 40-minute papers- separate papers for Biology Chemistry and Physics (as
	ner the Unit 1 exam).
Tonics to be covered	CHEMISTRY
in the exam:	A1 Structure and honding in applications in science
	• Understand the electronic structure of atoms:
	electronic orbitals Aufbau principle Bobr theory
	• Understand ionic bonding:
	strong electrostatic attraction between enpecitely charged ions, the effects
	ionic radius and ionic charge have on the strength of ionic honding
	formation of ions in terms of electron loss or gain, electronic configuration
	diagrams of actions and anions
	uldgrafins of Cations and amons.
	• Understand covalent bonding:
	electrons between them, dot and cross diagrams to show electrons in simple covalent molecules including those with multiple bonds and dative covalent
	(coordinate) bonds, the relationship between bond lengths and bond
	strengths in covalent bonds, tetrahedral basis of organic chemistry.
	Understand metallic bonding:
	de-localised electrons, positive metal ions o regular layer structure.
	 Understand the following intermolecular forces:
	van der Waals, dipole-dipole, hydrogen bonding.
	Understand the following:
	balanced equations, relative atomic mass, atomic number and relative
	molecular mass, moles, molar masses and molarities.
	 Understand the quantities used in chemical reactions:
	mass, volume of solution, concentration, reacting quantities, percentage yields.
	A2 (Production and uses of substances in relation to properties) will not be
	covered in this mock.
	BIOLOGY
	B1 Cell structure and function
	 Know that cell theory is a unifying concept stating that cells are a
	fundamental unit of structure, function and organisation in all living
	organisms.
	• Understand the ultrastructure and function of organelles in the following
	cells:
	prokaryote cells (bacterial cell) – nucleoid, plasmids, 70S ribosomes, capsule, cell wall
	eukaryotic cells (plant and animal cells) – plasma membrane, cytoplasm,
	nucleus, nucleolus, endoplasmic reticulum (smooth and rough), Golgi
	apparatus, vesicles, lysosomes, 80S ribosomes, mitochondria, centriole
	eukaryotic cells (plant-cell specific) – cell wall, chloroplasts, vacuole,
	tonoplast, amyloplasts, plasmodesmata, pits.

 Recognise cell organelles from electron micrographs and the use of light
microscopes.
 Understand the similarities and differences between plant and animal cell
structure and function.
 Understand how to distinguish between gram-positive and gram-negative
bacterial cell walls and why each type reacts differently to some antibiotics.
 Calculate magnification and size of cells and organelles from drawings or
images.
B2 Cell specialisation
Understand cell specialisation in terms of structure and function, to include:
 palisade mesophyll cells in a leaf
 sperm and egg cells in reproduction
 root hair cells in plants
white blood cells
• red blood cells.
B3 Tissue structure and function
 Understand the structure and function of epithelial tissue, to include:
squamous cells as illustrated by the role of alveolar epithelium in gas
exchange to include the effect of chronic obstructive pulmonary disease
(COPD) in smokers AND columnar cells as illustrated by goblet cells and
ciliated cells in the lungs to include their role in protecting lungs from
pathogens.,
• Understand the structure and function of endothelial tissue, as illustrated
by blood vessels in the cardiovascular system, including the risk factors that
damage endothelial cells and affect the development of atherosclerosis.
• Understand the structure and function of muscular tissue, to include:
the microscopic structure of a skeletal muscle fibre, structural and
physiological differences between fast- and slow-twitch muscle fibres and
their relevance in sport.
• Understand the structure and function of nervous tissue, to include:
non-myelinated and myelinated neurones, the conduction of a nerve impulse
(action potential) along an axon, including changes in membrane
permeability to sodium and potassium ions and the role of the myelination in
saltatory conduction, interpretation of graphical displays of a nerve impulse
and electrocardiogram (ECG) recordings, synaptic structure and the role of
neurotransmitters, including acetylcholine, how imbalances in certain.
naturally occurring brain chemicals can contribute to ill health, including
dopamine in Parkinson's disease and serotonin in depression, the effects of
drugs on synaptic transmission, including the use of L-Dopa in the treatment
of Parkinson's disease.
PHYSICS
C1 Working with waves
• Understand the features common to all waves and use the following terms
as applied to waves:
periodic time, speed, wavelength, frequency, amplitude, oscillation.
• Graphical representation of wave features.
• Understand the difference between the two main types of wave:
transverse. longitudinal.
Understand concepts of displacement coherence nath difference phase
difference, superposition as applied to diffraction gratings
Inderstand the industrial application of diffraction gratings, to include:
enderstand the industrial application of annaction gratings, to include.

emission spectra, identifying gases.
• Be able to use the wave equation: v f = λ
• Understand the concept and applications of stationary waves resonance.
Musical instruments.
• Be able to use the equation: calculation of speed v = $\sqrt{T/\mu}$
C2 (Waves in communication) and C3 (Use of electromagnetic waves in
communication) will not be assessed in this mock.

Materials to support your revision

Link to Online Resources:	There are no specific online resources for BTEC Applied Science level 3. Each student will be provided with a revision booklet (produced in house) which contains exam questions. There is also a published revision workbook available from the LRC (£6) along
	with a limited number of published revision guides (£6).
Link to exemplar	https://qualifications.pearson.com/en/qualifications/btec-nationals/applied-
questions or past	science-2016.coursematerials.html#filterQuery=Pearson-
papers to use:	UK:Category%2FSpecification-and-sample-assessments
	https://qualifications.pearson.com/en/qualifications/btec-nationals/applied-
	science-2016.coursematerials.html#filterQuery=category:Pearson-
	UK:Unit%2FUnit-1&filterQuery=category:Pearson-UK:Category%2FExternal-
	assessments
Link to model	See above
answers or mark	
schemes:	