Key Stage 5 (12 \& 13)

Course title: AS and A-Level Further Mathematics		
Exam board: OCR		
Specification code: H235 (AS) and H245		
Autumn 1 (September- October) Autumn 2 (October- December) Spring 1 (January- February)	Teacher 1	Teacher 2
	Pure Core 1:	Additional Pure Year 1:
	Matrices	Number bases
	- Language of matrices	- Notation
	- Matrix operations	- Convert between base n and 10
	- Determinants of matrices	- Calculations
	- Inverse matrices	- Proof
	Complex Numbers	Divisibility
	- Language of complex numbers	- Notation
	- Express in cartesian form	- Standard divisibility tests
	- Operations on complex numbers	- Division algorithm
	- Argand diagrams	- Euclid's Lemma
	- Loci	- Proof
		- Modular arithmetic
	Vectors	
	- Intersection of two lines	Prime Numbers
	- Scalar product	- Fundamental theorem of arithmetic
	- Vector product	- Integer combinations
	Proof by Induction	Binary Operations
		- Definitions
	Roots of Polynomials	- Cayley tables
	- Use relationships between symmetric functions	- Properties

		- Fibonacci and Lucas numbers - Proof by induction and sequences - Solving recurrence systems - Modelling
Spring 2 (February- Summer 1 (April-May)	Mechanics Year 1: Work, Energy and Power - Work done by a force - Kinetic energy - Potential, mechanical and conservation of energy - Work done by a force at an angle - Power	
	Dimensional Analysis - Defining and calculating - Units and dimensions of sums, differences and angles - Finding dimensions and predicting formulae	
	Momentum and Collisions - Momentum and impulse - Collisions and conservation of momentum - Restitution, kinetic energy and impulsive tension	
	Circular Motion - Linear speed vs angular speed - Acceleration in horizontal circular motion - Problem solving	
May/ June - AS Further maths exams		
Summer 2 (May-July),	Pure Core 2: Series and Induction - Review proof by induction	Mechanics Year 2: Centres of Mass - Of a system of pointed masses

Autumn 1 (September- October), Autumn 2 (October- December), Spring 1 (January- February), Spring 2 (February- March)	- Summation and induction - Standard summation series - Method of differences Lines and Planes in Space - Equation of a plane - Intersection between a line and a plane - Angles between lines and planes - Distances between points, lines and planes Simultaneous Equations and Planes - Linear simultaneous equations - Intersections of planes Powers and Roots of Complex Numbers - De Moivre's Theorem - Complex exponents - Roots of complex numbers - Roots of unity - Further factorising - Geometry of complex numbers Complex Numbers and Trigonometry - Deriving multiple angle formulae - Application to polynomial equations - Powers of trigonometric functions - Trigonometric series Hyperbolic Functions - Defining hyperbolic functions	- Of standard shapes - Of composite bodies Work, Energy and Power - Work done by a variable force - Hooke's law - Problem solving Linear Motion Under a Variable Force - Working with acceleration, velocity and displacement - Variable force Momentum and Collisions - Variable force and vector notation - Oblique impacts - Oblique collisions Circular Motion - Conservation of mechanical energy - Components of acceleration - Problem solving Centres of Mass - By integration - Equilibrium of a rigid body Additional Pure Year 2: Sequences and Series - Solve second order recurrence relations

- Inverse hyperbolic functions
- Hyperbolic identities
- Solving harder hyperbolic equations
- Differentiation
- Integration

Further Calculus Techniques

- Differentiation of inverse trigonometric functions
- Differentiation of inverse hyperbolic functions
- Using inverse trigonometric and hyperbolic functions in integration
- Using partial fractions in integration

Applications of Calculus

- Maclaurin series
- Using standard Maclaurin series
- Improper integrals
- Volumes of revolution
- Mean value of a function

Polar Coordinates

- Curves in polar coordinates
- Features of polar curves
- Changing between polar and Cartesian coordinates
- Area enclosed by a polar curve
- Area between two curves

Differential Equations

- Terminology
- Integrating factor method

Number Theory

- Solve simultaneous linear congruences
- Quadratic residues
- Fermat's little theorem

Groups

- Lagrange's theorem for subgroups
- Isomorphic groups
- Groups of order greater than 7

Further Vectors

- Volumes of tetrahedra and parallelopipeds
- The scalar triple product

Surfaces and Partial Differentiation

- Classifying stationary points in 3-D
- Equation of a tangent plane of a 3-D curve

Further Calculus

- Integration by reduction
- Arc lengths and surfaces of revolution

	- Homogeneous second order linear differential equations - Non-homogeneous second order linear differential equations Applications of Differential Equations - Forming differential equations - Simple harmonic motion - Damping and damped oscillations - Linear systems	
Summer 1 (April-May)	Revision	Revision

