Key Stage 5 (12 \& 13)

Course title: A-Level Mathematics

Exam board: OCR

Specification code: H240

Teacher 1	Teacher 2
Indices and Surds - Manipulate surds - Rationalise a denominator - Simplify expressions with indices Extension of GCSE concepts	Straight Lines - Mid-points - Distance between two points Formalises GCSE concepts
Quadratic Functions - Completing the square - Factorising - Quadratic formula Extension of GCSE concepts	Straight Lines - Equation of a line - Parallel and perpendicular lines Extension of GCSE concepts
Quadratic Functions - Use of the discriminant - Curve sketching	Binomial Expansion - Link Pascal's triangle to binomial coefficients - Use of Binomial expansion formula
Simultaneous Equations and Quadratic Inequalities - Solve simultaneous equations including one linear/ one quadratic and two curves. - Solve quadratic inequalities	Differentiation - Understand that the derivative is the gradient of the tangent to the curve - Use of correct notation - Differentiation from first principles

	Solving Equations Graphically and Graphical Inequalities - Use of points of intersection - Understand and use proportional graphs - Graph linear and quadratic inequalities Proof - Set and interval notation - Direct proof - Proof by exhaustion - Proof by counter example - Logical connectives Polynomials - Factor theorem - Polynomial division - Comparing coefficients	- Rules of differentiation - Use of second derivative and notation - Tangents and normals - Stationary points - Increasing/ decreasing functions - Optimisation
Autumn 2 (October- December)	Transformations - Single transformations only in Year 12	Circles - Use of circle theorems and equation of a circle to solve problems
	Exponential Functions - Graphs of exponential functions - Introduction to e^{x} and gradient - Introduction to logs	Integration - Integrate indefinite integrals - Integrate between limits - Find the area between a curve and the x-axis

	Logarithms - Laws of logs - Logs to any base and logs to base e - Natural logs - Graphs of natural logs - Solving equations with exponentials - Reduction to linear form and modelling exponential functions Disguised Quadratics - Solve a quadratic in another function	Vectors - Column and component notation - Magnitude and direction - Basic operations on vectors - Position vectors - Distance between points - Problem-solving - shapes in 3D
Spring 1 (January- February)	MECHANICS SI Units Kinematics	Trigonometry - Sine and Cosine rules - Area of a triangle formula - Trigonometric curves - Trigonometric identities - Solving equations

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Summer 1 \\
(April-May)
\end{tabular}} \& \begin{tabular}{l}
Year 2 \\
Trigonometry \\
- Radians \\
- Equations \\
- Arcs and sectors
\end{tabular} \& \\
\hline \& \begin{tabular}{l}
Binomial Expansion \\
- Year 2 formula
\end{tabular} \& Large Data Set \\
\hline \begin{tabular}{l}
Summer 2 \\
(May-July)
\end{tabular} \& Integration as a limit of a sum

Trapezium Rule \& | Year 2 |
| :--- |
| Differentiation |
| - Chain rule |
| - Differentiation of In |
| - Product Rule |
| - Quotient Rule |
| - Reciprocal trigonometric functions |
| - Differentiation of trigonometric functions |
| - Implicit differentiation |
| - Differentiation of parametric equations |

\hline
\end{tabular}

	Sequences and Series - Arithmetic sequences - Geometric sequences - Sigma notation and sum to infinity	
	Rational Functions - Partial Fractions	Numerical methods - Sign change rule - Iteration - Cobweb and staircase diagrams - Newton-Raphson - Limitations of iteration and Newton-Raphson
Autumn 1 (SeptemberOctober)	Functions - Definitions - Vocabulary and notation - Domain and range - Composite and Inverse	

Autumn 2 (October- December)	Proof - Recap Year 1 - Proof by contradiction	
	Vectors - Recap Year 1 - 3D notation	
	Points of Inflection - Recap increasing and decreasing functions - Concave and convex curves - Stationary and non-stationary points of inflection	
Spring 1 (JanuaryFebruary) \& Spring 2 (FebruaryMarch)	Year 2 Mechanics: Applications of Vectors - Describing motion in two dimensions - Constant acceleration equations - Calculus with vectors - Vectors in three dimensions - Solving geometrical problems Projectiles - Modelling projectile motion - Trajectory Forces - Resolving forces	Year 2 Statistics: Conditional Probability - Set notation and Venn diagrams - Two-way tables - Tree diagrams - Modelling The Normal Distribution - Introduction to normal probabilities - Inverse normal distribution - Finding unknown μ or σ - Modelling Hypothesis Testing

	- Coefficient of friction - Motion on a slope - Equilibrium problems Moments - Turning effect of a force - Equilibrium - Non-uniform rods - Equilibrium problems	- Distribution of the sample mean - Hypothesis tests for a mean - Hypothesis tests for correlation coefficients
Summer 1 Summer 2 (May-July)	Revision	Revision

