OCR

Cambridge Advanced National in Human Biology

TRANSITION BOOKLET

QUEEN ELIZABETH HIGH SCHOOL

<u>Please email gschumacher@qehs.net stating that you are completing the transition booklet for</u> <u>Human Biology</u>

About this resource

This resource was produced in May 2020 and adapted in June 2025 by Mrs Fraser for Queen Elizabeth High School.

Resources used in the production of this booklet include:

BTEC Level 3 National Extended Certificate in Applied Human Biology specification issue 5 (2019) https://qualifications.pearson.com/content/dam/pdf/BTEC-Nationals/applied-humanbiology/2018/specification-and-sampleassessments/9781446958599 BTECNAT L3 EXTCERT_APPHUMBIO_SPEC_PPV2_070618upd.pdf (accessed 13/05/2020)

AQA Transition Guide: Biology. <u>https://filestore.aqa.org.uk/resources/biology/AQA-7401-7402-</u> <u>TG.PDF</u> (accessed 13/05/2020)

Student Support: GCSE to A Level Biology Transition. Oxford University Press (2019) https://www.kerboodle.com/app/courses/16091/modules/Resources (accessed 13/05/2020)

Biology Bridging work, Mrs Fletcher Woods, May 2020

Welcome

The Cambridge Advanced National in Human Biology is a fantastic qualification that is designed to help students progress onto a career in biological sciences, life sciences, and human biology. It is recognised by UCAS and we know that many students will achieve Distinction and Distinction* grades (equivalent to A and A*).

Students who take this qualification will leave with a well rounded skill set, able to complete practical work, carry out research, logically solve problems, carry out calculations, develop and execute a plan, write reports and deliver presentations.

How this course works

Unlike with A-levels, you will have an exam at the end of year 12, and both years you will complete coursework assignments aka NEAs (Non examined assignments).

Year	Unit	Assessment	Contribution to
		method	overall grade (%)
12	F170 Fundamentals of Human Biology	Exam	22
12	F172 Genetics	NEA	14
12	F173 Biomedical techniques	NEA	14
13	F171 Health and Disease	Exam	22
13	We will choose 2 units from:	NEA	14
13	F174 Nutrition and Metabolism	NEA	14
	F175 Human Reproduction		
	F176 The brain		
	F177 Drug Development		

At the end of year 12 we will review each students progress and make sure that you are ready to move into year 13. There will be opportunities to resit exams and every mark that you get counts towards your final grade.

F170 Fundamentals of human biology (Year 12)

This unit covers some of the biological principles that underpin human biology. You will study human body functions at a genetic, cellular, and tissue level. You will look at the nervous, hormonal, and reproductive systems, as well as covering the basics of microbiology

F172 Genetics (Year 12)

In this coursework unit you will learn about DNA, cell division, and inheritance. In your NEA you will take on the role of a genetic counsellor and further research a genetic disorder.

F173 Biomedical techniques (Year 12)

In this coursework unit you will discover biomedical techniques and develop your use of diagnostic techniques. In your NEA you will plan and carry out a clinical investigation leading to a diagnosis.

F171 Health and Disease (Year 13)

You will learn about the intriguing and challenging nature of diseases, including how they are cured, prevented, diagnosed, and monitored. You will find out about researching, referencing, and confidentiality.

Internally assessed unit (Year 13)

You will carry out three internally assessed assignments widening your knowledge of a particular area of the body. The unit content is to be confirmed but will focus on one of the following: Nutrition and Metabolism, Human Reproduction, The brain, Drug Development

Places to go for help

1. The exam board website is a good place to start

Visit https://www.ocr.org.uk/qualifications/cambridge-advanced-nationals/human-biologylevel-3-h049-h149/qualification-at-a-glance/#extended-certificate. The Biology webpages are aimed at teachers, but you may find them useful too. Information includes:

- The specification this explains exactly what you need to learn for your exams.
- Specimen exam papers
- 2. Royal Society of Biology

"A single unified voice for biology". They work with everyone from government policy makers to students, as well as universities and researchers studying biology. Their website includes a dedicated student section. Have a look at rsb.org.uk

3. The student room

Join the A-level Biology forums and share thoughts and ideas with other students if you're stuck with your homework. Just be very careful not to share any details about your assessments, there are serious consequences if you're caught cheating. Visit thestudentroom.co.uk

- 4. Primrose Kitten revision resources <u>https://www.primrosekittenacademy.com/course/ocr-level-</u><u>3-alternative-academic-qualification-human-biology-revision-bootcamp</u>.
- 5. YouTube

YouTube has thousands of Biology videos. Just be careful to look at who produced the video and why because some videos distort the facts. Check the author, date and comments – these help indicate whether the clip is reliable. If in doubt, ask your teacher.

6. Magazines

Focus, New Scientist or Philip Allan updates can help you put the biology you're learning in context. Have a look in the LRC for the latest edition.

Activities to help you prepare for year 12

We have put together this transition booklet to help you prepare for the move into year 12. It includes lots of short activities to help you recap key GCSE information. It is divided into 4 sections.

Торіс		page	Tick when completed			
SECTION 1: Human cells						
1.	Eukaryotic cells	6				
2.	Stem cells	7				
3.	Microscopy	7				
4.	Cell transport	8				
5.	Cell Division	9				
	SECTI	ON 2: Organs				
1.	Organisation	11				
2.	The heart	12				
3.	Lungs	13				
4.	Digestive system	14				
5.	Organ failure	15				
	SECTION 3: Endocrinology, Neurobiology, and reproduction					
1.	The endocrine system	17				
2.	The nervous system	19				
3.	The reproductive system	20				
	SECTION	4: Microbiology				
1.	Prokaryotes and eukaryotes	23				
2.	Routes of transmission	23				
3.	Example pathogens	24				
4.	Treating disease	25				
5.	Aseptic technique	25				
6.	Analysing zones of inhibition	27				
7.	Dilutions	28				
	SECTION 5: Genetics					
1.	Protein Synthesis	29				
2.	Structure of DNA	29				
3.	Genetic key terms	30				
4.	Inheritance of sex	30				
5.	Punnet squares	31				

SECTION 1: HUMAN CELLS AND TISSUES

1. Eukaryotic cells

For Human Biology, the focus is on humans.

Human cells are Eukaryotic. What does this mean?

Match up the cell parts with their function:

Nucleus
Cytoplasm
Mitochondria
Cell Membrane
Ribosomes

Where chemical reactions occur.

Where protein synthesis occurs.

Controls the cell. Contains the DNA in the form of chromosomes.

The site of aerobic respiration.

Controls the movement of substances in and out of cells.

In the space below, draw and label a general, unspecialised human cell:

Write the definition of a stem cell below:

3. Microscopy

For each of the microscopes below, fill in the table:

Photo	
Name	
Advantages	
Disadvantages	

Put the steps in order for how to use a light microscope

- A. Place your slide on the stage
- B. Look down the eyepiece lens
- C. Use the fine focus wheel to make sure the image is as focused as possible
- D. First, make sure you have the objective lens at the lowest power magnification
- E. Move the mirror so that the light shines through the slide
- F. Change the objective lens to a higher magnification
- G. Use the coarse focus wheel to get the image into focus

Order of stages:

4. Cell transport

At GCSE you learnt about three types of cell transport: diffusion, osmosis, and active transport.

Sort the statements below into the appropriate columns:

- Movement of water only
- Movement across a partially/ semi permeable membrane (use twice)
- How minerals enter root hair cells
- Does not require energy (use twice)
- How water enters root hair cells
- Passive (use twice)
- Requires energy
- Active
- How carbon dioxide enters a plant
- Substances move from an area of high concentration to an area of low concentration
- Only occurs in nature (use twice)
- Water moves from an area of high concentration of water to an area of low concentration of water
- Can happen in any gas or liquid
- Substances move from an area of low concentration to an area of high concentration

Diffusion	Osmosis	Active Transport

5. Cell Division

You looked at the cell cycle and mitosis in Yr 10 as part of the cells topic. The cell cycle is made up of the 3 stages, I______, Mitosis & C______. Below is a simple diagram of mitosis. Add some descriptions to the side and then finish the sentences on the next page.

Interphase is the first stage of the cell cycle. During this stage....

The process of mitosis produces....

Cytokinesis is....

In mitosis, the chromosome number....

Meiosis is another type of cell division, and is used in the production of gametes. Read the statements below and decide whether they apply to mitosis or meiosis.

Statement	Mitosis	Meiosis
4 daughter cells produced		
2 daughter cells produced		
Gives variation		
1 division happens		
Chromosome number is halved		
Daughter cells are identical		
Produces gametes		
Chromosome number stays the same		
2 divisions happen		
Produces body cells		

Draw a simple diagram of meiosis:

SECTION 2: ORGANS

1. Organisation

Put the following structures in order from smallest to largest

Organism

Organ system

Tissue

Organ

 $___\to___\to___\to___\to___\to___$

Identify the organ system described:

Cell

Name	Description
	responsible for the transport of blood,
	circulation of oxygen/carbon dioxide,
	antibodies, red and white blood cells, molecules
	including glucose and hormones and for
	supports movement and balance and the bones
	also act as a calcium storage site and produce
	blood cells
	responsible for the processes of
	thermoregulation, plasma glucose regulation
	and osmoregulation
	includes the sweat glands in the skin but also
	the kidneys for the excretion of urea
	consists of the trachea, bronchi, bronchioles,
	lungs, rib cage and intercostal/diaphragm
	muscles and carries out inspiration and
	expiration
	consists of the mouth, oesophagus, stomach
	and small and large intestines

Organ systems:

Lymphatic

Homeostatic

Respiratory

Blood circulatory Gastrointestinal Excretory

Musculo-skeletal

2. The heart

Label the diagram below. You should include the following labels:

- Right atrium
- Right ventricle
- Vena Cava
- Pulmonary artery
- Valve
- Right atrium
- Right ventricle
- Vena Cava
- Pulmonary artery
- Valve

13

3. Lungs

Label structures A to E

Describe the pathway taken by air after it enters via the mouth

 $\mathsf{Mouth} \rightarrow ___ \rightarrow ___ \rightarrow __ \rightarrow \mathsf{red} \mathsf{ blood} \mathsf{ cell}$

In the alveoli, gases are exchanged.

What gas diffuses into the blood? _____

What gas diffuses out of the blood? ______

Link the description to it's reason:

Description

Lots of, rounded

Close to capillaries, walls of the alveoli are only 1 cell thick.

Blood flows continuously through the capillaries

Adaptation

Maintains the concentration gradient

Large surface area

Short Diffusion path

4. Digestive system

Use the word b	ank below to co	mplete th	e parag	graph.					
In the mouth , food is chewed as part of digestion. Chemical digestion also occurs							also occurs		
as the enzyme	is	produced	l by the	salivary	glands,	breakir	ng down	starch ir	ito
	<u> </u> .								
Food then pass	ses down the osc	ophagus t	o the s t	tomach.	Here it i	is mixec	l with		
	acid	and the e	nzyme			which b	oreaks do	own prot	eins into:
Then the food	moves into the s	mall inte	stine . F	rom the	·		mo	re enzyn	nes are
added, whilst b	ile is added fror	n the		Bile	e has two	o purpo	ses, first	ly it	
	the stoma	ach acid to	o provid	de the _			pH for e	nzymes,	and
secondly it		fats; brea	aking la	rge lum	os into s	maller p	ieces to	give a gr	eater
surface area fo	r enzymes.								
The small intes	tine actually has	two func	ctions. I	t carries	out		diges	tion usin	g both the
enzymes produ	iced there and t	he enzym	es from	the pai	ncreas. T	he 3 en	zymatic	reaction	s are:
1	hr	eaks dow	n starch	n into					
1 2	br	eaks dow	n nrote	in into					
3.	br	eaks dow	n lipids	into		and			
The second fun	iction is absorpt	ion. The s	mall int	testine is	s well ad	apted fo	or this. F	inger like	e projections
called	give a large _		area	a, and th	ne close	proximi	ty to the		means
there is a very	short	path	. Finally	/ the exc	cellent bl	lood sup	oply mail	ntains th	e
	gradient.								
In the large int	estine , only was	te produc	cts rema	ain. Any	excess _		is at	osorbed i	nto the
blood. The was	te, known as fae	eces, is sto	ored in	the		before	being eg	gested via	a the
·									
Word bank									
Mechanical	Amino acids		Villi	Optimu	ım		Pancre	as	Glucose
Amylase	Water Chemi	cal	Rectum	า	Hydroc	hloric	Surface	9	Neutralise
Amylase	Fatty acids	Protease	е	Anus	Lipase		Protea	se	Liver
Concentration	Capillaries	Glucose		Glycero	bl	Emulsi	fies	Amino	acids
Diffusion									

Now label the organs of the digestive system. They are all listed in bold on the previous page.

5. Organ Failure

Link the disease with its cause:

Disease

CHD

Liver Cirrhosis

Lung cancer

Type 1 diabetes

Cause

Genetics, high fat and salt diet

Genetics, obesity

Alcohol

Smoking

Read the information below about the two types of replacement heart valve. Which would you choose and why?

MECHANICAL REPLACEMENT

- Made of plastic and metal
- Lasts 20-25 years
- No antigens so your body won't reject it
- Increases the chance of a blood clot so you have to take anti-clotting medicine for the rest of your life
- When you are on the anti-clotting medicine if you get injured you will bleed badly

BIOLOGICAL REPLACEMENT

- Made of tissue from a human, pig or cow
- There is a shortage of human donors
- There are ethical issues around using animal tissue
- Lasts 10-15 years
- Has antigens so your body might reject it
- You have to take immunosupressants to prevent rejection
- While on immunosupressants your immune system doesn't work properly and a small cold could be fatal

My choice would be	because

1. The endocrine system

Complete the table below:

Label	Organ name	Function
А		
В		
С		
D		
E		
F		

Consider- causes, symptoms, treatment

2. The nervous system

Identify the parts of a reflex arc. Then complete the paragraph.

Write a short paragraph to explain how a neurone is adapted for it's function:

Describe how a message is transmitted between 2 neurones at a synapse. Draw a diagram in the box to illustrate this

Key words: synapse, chemicals, diffuse, impulse

3. The reproductive system

Label the structure of the male reproductive system

vagina.

Label the structure of the female reproductive system

Complete the mnemonic for the female reproductive hormones

	Hormone name		Made in the
F		Ρ	
0		0	
L		Ρ	
Р		0	

- 1. The menstrual cycle is the reproductive cycle in women, which starts with a period (menstruation), if the woman is not pregnant.
- 2. There are four hormones involved: FSH, LH, oestrogen & progesterone.
- 3. FSH (released by the pituitary gland) causes eggs to mature in the ovaries.
- 4. FSH stimulates ovaries to produce oestrogen.
- 5. Oestrogen (made by the ovaries) inhibits further release of FSH and stimulates release of LH. It stimulates the lining of the uterus to grow again.
- 6. LH (released by the pituitary gland) stimulates the release of an egg (ovulation) from an ovary.
- 7. LH stimulates secretion of progesterone by the empty ovary.
- 8. Progesterone inhibits the release of LH and FSH.
- 9. Progesterone maintains the lining of the uterus.
- 10. If the egg is not fertilized the levels of progesterone decrease. The thick womb lining starts to break down. This is the start of your period.

1. Highlight/colour the 4 different hormones names wherever you find them in the text. Fill in the key below:

- Gira FSH
- 🛛 LH
- Oestrogen
- Progesterone

2. Where are FSH and LH made? ______

3. Where are oestrogen and progesterone made? ______

4.Which hormone makes eggs mature? _____

5. Which hormones are involved in making the womb lining thick?_____

6. Which hormone inhibits FSH? _____

7. Which hormone stimulates LH?

8. Which hormone causes egg release? ______

- 9. What is the scientific term for a period?
- 10. What is the scientific term for the release of an egg? _____
- 11. What happens if the egg is not fertilized?

SECTION 4: MICROBIOLOGY

1. Prokaryotes and Eukaryotes

What is the key difference between a eukaryotic and a prokaryotic cell?

In the space below, draw and label a diagram of a bacterium (a typical prokaryote)

What is the function of a flagella?

Why do some bacteria have a slime capsule?

2. Routes of transmission

Create a mindmap to show the different ways that diseases can be spread

$\left(\right)$	Routes of	
\langle	transmission	

Fill in the table	about the even	anla human	nothogones	vou studiod at	CCCE
FILLIN THE LADIE	about the exam	ible numan	Dathogens	vou studied at	ULDE.
			00.00000000		000-

Name	Disease it causes with key symptoms	Type of pathogen (viral, bacterial, protest)	Transmission route	Treatment
Measles				
HIV				
Salmonella				
Gonorrhoea				
Malaria				

4. Treating disease

Fill in the gaps:

5. Aseptic technique

Aseptic technique is used by microbiologists when growing bacteria to make sure that they produce contamination free results.

If you did combined science instead of triple science you may not have carried out a practical using this method and should watch <u>https://www.youtube.com/watch?v=BkbLl2mAMP8</u> and read <u>https://www.bbc.co.uk/bitesize/guides/z8fkmsg/revision/7</u>.

Name these pieces of equipment.

Complete the method by giving the reasons behind each step.

1. Before all the equipment	
was used, it had to be	
sterilised. This means	
2 The deck was disinfected	
2. The desk was disinfected	
3. The experiment was done	
near a bunsen because	
4. The forceps (tweezers)	
were sterilised by	
5. The tweezers were used to	
pick up a paper disk	
which	
6. The lid of the plate was	
7. We repeated this with	
8. The plate was labelled on	
the agar side so	
9. The lid was taped so	
10. The plate was put in the	
incubator with the lid side	
down because	
11. The plate was incubated at	
25°c	

6. Analysing zones of inhibition

The photos below show agar plates that have been inoculated with a pink bacterium. Into each well, a different antibiotic solution was placed. Where the bacteria have been killed, the agar is now yellow. Use a ruler to measure the inhibition zone radii.

Results

Person A- flu

Flu (Influenza virus)	Zone of Inhibition Radius (mm)	Zone of inhibition area (mm ²)
Penicillin		
Methicillin		
Erythromycin		
Vancomycin		
Amoxicillin		

Recommended antibiotic:

Person B- Strep throat

Strep throat (Streptococcus bacterium)	Zone of Inhibition Radius (mm)	Zone of inhibition area (mm²)
Penicillin		
Methicillin		
Erythromycin		
Vancomycin		
Amoxicillin		

Recommended antibiotic:

Person C- MRSA

MRSA (Methicillin Resistant Staphylococcus aureus bacterium)	Zone of Inhibition Radius (mm)	Zone of inhibition area (mm²)
Penicillin		
Methicillin		
Erythromycin		
Vancomycin		
Amoxicillin		

Person D- Staph wound infection

Staph infection (Staphylococcus bacterium)	Zone of Inhibition Radius (mm)	Zone of inhibition area (mm²)
Penicillin		
Methicillin		
Erythromycin		
Vancomycin		
Amoxicillin		

Recommended antibiotic:

Recommended antibiotic:

Now answer these questions:

What treatment would you recommend for person A and why?

Methicillin is usually used for treating Staph infections. What would happen if you gave it to person C?

7. Dilutions

You may be asked to make dilutions as part of a practical. How would you make the following?

- 100ml of 50% bleach solution from 100% bleach and water?
- 5 ml of 20% virkon solution from 40% virkon solution and water?
- 20ml of 0.5M acid from 1M acid and water?

- A 1 gram/litre solution from a 10g/litre solution and water?

28

SECTION 5: GENETICS

1. Protein Synthesis

Protein synthesis was only covered by triple students so if you did Combined science then it would be helpful for you to watch <u>https://www.youtube.com/watch?v=1GgNNYZ47rk</u>

Transcription occurs in the n_____ and is when the DNA message is turned into

This then leaves the n______ and goes to the c______. Translation then occurs. A r______ joins onto the messenger and reads it three letters at a time. A carrier brings in a______ a _____ which are joined together to form a

2. Structure of DNA

Here is a single DNA nucleotide. What
are parts A, B, and C?
A:
В:
C:

3. Genetics key terms

Match the key word with its definition:

Cono	An allele that is every and even if
Gene	An allele that is expressed even in
	only one copy is present.
Allele	An individual who has two alleles
	that are the same.
Dominant	The genes that an individual has
Recessive	A section of DNA that codes for a
	protein
Homozygous	The observable characteristics of an
	individual
Heterozygous	An individual who has two alleles
	that are different
Phenotype	A version of a gene
Genotype	An allele that is only expressed if
	two copies are present.

30

4. Inheritance of sex

	X	X
X	xx	xx
Y	ХҮ	ХҮ

Explain why the probability of a family having 2 consecutive boy children is 0.25

5. Punnet squares

Huntington's disease is an example of a disease where the mutation causing the disease is dominant.

h: normal (recessive)

H: mutation (dominant)

		Paternal alleles		
		н	h	
Maternal alleles	h			
	h			

Cystic fibrosis is an example of a disease where the mutation causing the disease is recessive.

- F: normal (recessive)
- f: mutation (dominant)

		Paternal alleles	
		F	f
Maternal alleles	F		
	f		

For each of the Punnett squares:

- 1. Complete the diagrams to show the alleles for each child.
- 2. State which parent and child is:
 - healthy
 - has the disease
 - a carrier.

Each of the following statements is false. Re-write each one so that it becomes true.

- The first Punnett square shows that one in every four children from this couple will have Huntington's disease.
- The second Punnett square shows that there is a one in three chance that a child born to this couple will have cystic fibrosis.
- All children of the second couple will either be carriers or suffer from cystic fibrosis.
- The percentage of children who are sufferers on the diagram is the same as the percentage of children each couple will have who are sufferers.
- Having one child who is born with cystic fibrosis means that the next three children will not have the disease.
- 6. A 50:50 chance is the same as a 0.25 probability.